Quick Start
from vecx.vectorx import VectorX
# Initialize client with your API token
vx = VectorX(token="your-token-here")
# Generate a secure encryption key
encryption_key = vx.generate_key()
# Create a new index
vx.create_index(
name="my_index",
dimension=768, # Your vector dimension
key=encryption_key, # Encryption key
space_type="cosine" # Distance metric (cosine, l2, ip)
)
# Get index reference
index = vx.get_index(name="my_index", key=encryption_key)
# Insert vectors
index.upsert([
{
"id": "doc1",
"vector": [0.1, 0.2, 0.3, ...], # Your vector data
"meta": {"text": "Example document"}
"filter":{"category": "reference"} # Optional filter
}
])
# Query similar vectors
results = index.query(
vector=[0.2, 0.3, 0.4, ...], # Query vector
top_k=10,
filter={"category": {"eq":"reference"}} # Optional filter
)
# Process results
for item in results:
print(f"ID: {item['id']}, Similarity: {item['similarity']}")
print(f"Metadata: {item['meta']}")
Last updated on