Skip to Content
Usage

Basic Usage

Initializing the Client

from vecx.vectorx import VectorX # Production with specific region vx = VectorX(token="your-token-here")

Managing Indexes

# List all indexes indexes = vx.list_indexes() # Create an index with custom parameters vx.create_index( name="my_custom_index", dimension=768, key=encryption_key, space_type="cosine", M=16, # Graph connectivity parameter (default = 16) ef_con=128, # Construction-time parameter (default = 128) use_fp16=True # Use half-precision for storage optimization (default = True) ) # Delete an index vx.delete_index("my_custom_index")

Working with Vectors

# Get index reference index = vx.get_index(name="my_custom_index", key=encryption_key) # Insert multiple vectors in a batch index.upsert([ { "id": "vec1", "vector": [...], # Your vector "meta": {"title": "First document", "tags": ["important"]} }, { "id": "vec2", "vector": [...], # Another vector "meta": {"title": "second document", "tags": ["important"]} "filter": {"visibility": "public"} # Optional filter values } ]) # Query with custom parameters results = index.query( vector=[...], # Query vector top_k=5, # Number of results to return filter= {"visibility":{"eq":"public"}}, # Filter for matching ef=128, # Runtime parameter for search quality include_vectors=True # Include vector data in results ) # Delete vectors index.delete_vector("vec1") index.delete_with_filter({"visibility":{"eq":"public"}}) # Get a specific vector vector = index.get_vector("vec1")
Last updated on